Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n‐butanol
نویسندگان
چکیده
Biocatalytic processes often encounter problems due to toxic reactants and products, which reduce biocatalyst viability. Thus, robust organisms capable of tolerating or adapting towards such compounds are of high importance. This study systematically investigated the physiological response of Pseudomonas taiwanensis VLB120∆C biofilms when exposed to n-butanol, one of the potential next generation biofuels as well as a toxic substance using microscopic and biochemical methods. Initially P. taiwanensis VLB120∆C biofilms did not show any observable growth in the presence of 3% butanol. Prolonged cultivation of 10 days led to biofilm adaptation, glucose and oxygen uptake doubled and consequently it was possible to quantify biomass. Complementing the medium with yeast extract and presumably reducing the metabolic burden caused by butanol exposure further increased the biomass yield. In course of cultivation cells reduced their size in the presence of n-butanol which results in an enlarged surface-to-volume ratio and thus increased nutrient uptake. Finally, biofilm enhanced its extracellular polymeric substances (EPS) production when exposed to n-butanol. The predominant response of these biofilms under n-butanol stress are higher energy demand, increased biomass yield upon medium complements, larger surface-to-volume ratio and enhanced EPS production. Although we observed a distinct increase in biomass in the presence of 3% butanol it was not possible to cultivate P. taiwanensis VLB120∆C biofilms at higher n-butanol concentrations. Thereby this study shows that biofilms are not per se tolerant against solvents, and need to adapt to toxic n-butanol concentrations.
منابع مشابه
The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition‐related alterations
Microorganisms, such as Pseudomonas putida, utilize specific physical properties of cellular membrane constituents, mainly glycerophospholipids, to (re-)adjust the membrane barrier to environmental stresses. Building a basis for membrane composition/function studies, we inventoried the glycerophospholipids of different Pseudomonas and challenged membranes of growing cells with n-butanol. Using ...
متن کاملHyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)‐styrene oxide formation
The attachment strength of biofilm microbes is responsible for the adherence of the cells to surfaces and thus is a critical parameter in biofilm processes. In tubular microreactors, aqueous-air segmented flow ensures an optimal oxygen supply and prevents excessive biofilm growth. However, organisms growing in these systems depend on an adaptation phase of several days, before mature and strong...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملDetection of Neuraminidase Activity in Pseudomonas aeruginosa PAO1
Objective(s) Some properties of neuraminidase produced by Pseudomonas aeruginosa PAO1 growth in a defined medium (BHI) were examined and evaluated for its features. Materials and Methods The obtained supernatant enzyme of P. aeruginosa PAO1 cultures was used in a sensitive fluorometric assay by using 2'-(4-methylumbelliferyl) a-D-N acetylneuraminic acid as substrate. As hydrolyzing MUN with ...
متن کاملVariability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains
Pivotal challenges in industrial biotechnology are the identification and overcoming of cell-to-cell heterogeneity in microbial processes. While the development of subpopulations of isogenic cells in bioprocesses is well described (intra-population variability), a possible variability between genetically identical cultures growing under macroscopically identical conditions (clonal variability) ...
متن کامل